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Abstract—The dropout technique is a data-driven regular-
ization method for neural networks. It consists in randomly
setting some activations from a given hidden layer to zero during
training. Repeating the procedure for each training example, it
is equivalent to sample a network from an exponential number
of architectures that share weights. The goal of dropout is to
prevent feature detectors to rely on each other. Dropout has
successfully been applied to Deep MLPs and to convolutional
neural networks, for various tasks of Speech Recognition and
Computer Vision. We recently proposed a way to use dropout in
MDLSTM-RNNs for handwritten word and line recognition. In
this paper, we show that further improvement can be achieved by
implementing dropout differently, more specifically by applying
it at better positions relative to the LSTM units.

I. INTRODUCTION

The deep neural network proposed by [1] won the Ima-
geNet evaluation introducing an impressive gap in accuracy
with respect to previous state-of-the-art systems. This success
has provoked a massive interest for all the tricks used to train
the classifier neural network, including the Dropout trick.

Dropout is a powerful regularization method originally
proposed in [1] for Multi-Layer Perceptrons (MLPs) trained by
Stochastic Gradient Descent (SGD). It consists in adding noise
to the intermediate data representations in a neural network
during the forward propagation step of the SGD, namely by
setting to zero a random subset of the hidden activations (right
after the application of a nonlinear function, such as a tanh
or a rectified linear unit [2]). The backward propagation in
the SGD is modified accordingly. Dropout was conceived to
prevent the co-adaptation of learned hidden features which is a
source of overfitting. It can be seen as an economical approxi-
mation to combining a large number of neural subnetworks, as
demonstrated mathematically under some particular conditions
by [3]. There is now strong empirical evidence that dropout is
an efficient data-driven regularizer, meaning that it improves
generalization performance on various tasks, and that it has
the same effect as weight decay on outgoing weights [4] while
having an extremely simple implementation.

Dropout was first experimented with full standard con-
nections within neural networks. A false rumour stated
that dropout in combination with parameterized convolutions
should not work well, but some attempts demonstrated that it
actually is a source of improvement [5]. Then, some works
demonstrated that dropout can significantly increase the gen-
eralization capacity in architectures with recurrent layers [6].
In particular, [4] and [7] successfully implemented dropout in

Recurrent Neural Networks (RNN) composed of Long Short-
Term Memory (LSTM) cells [8]: in [4] for Handwriting Text
Recognition, and in [7] for Language Modeling and Speech
Recognition. As a matter of fact, LSTM networks are now
the state-of-the-art in offline Text Recognition [9], [10], which
is the application of interest in the current work. In [4],
dropout is applied after all the recurrent connections have been
computed on the whole input sequence. In [7], it is applied
between every two LSTM layers. In both cases, the recurrent
connections are left untouched. The underlying motivation for
NOT doing dropout within or before the LSTM cells is to
prevent threatening the memorization ability of these LSTM
cells.

In this paper, we carry out extensive experiments to test
where is the best place for dropout in an LSTM network,
without any theoretically-based a priori on where it should
be. Empirical results show that, surprisingly, the best place for
dropout is not the one intuitively chosen by [4] and [7].

II. DIFFERENT PLACES WHERE DROPOUT CAN BE APPLIED

In [4] and [7], dropout is used only outside the LSTM
layers, so as not to affect the recurrent connections. We can
theoretically apply dropout between any two layers, provided
that it occurs after a non-linearity and before the application
of a parameterized linear transformation.

Figure 1 describes the different places where dropout can
be applied, with respect to the LSTM layer. The dropout is
represented by layers with black units (circles) inside, that
stand for the randomly chosen neurons to disable. LSTM
layers are the ones with horizontal arrows that stand for the
recurrence (from-left-to-right and from-right-to-left). There are
three different and complementary ways of applying dropout

(a)  Before: on all the input values of the LSTM.

(b)  Inside: on the output values of the LSTM within the
recurrence loop (i.e. dropout is applied on the output
at step t before it is used to compute the output at
step ¢ + 1.

(c) After: on the output values of the LSTM after all
the recurrence iterations have been achieved, with-
out modifying the internal representation inside the
LSTM layer.

For the position before the LSTM layer (Figure 1(a)), there
are actually two possibilities. The first one is to drop the
same LSTM inputs for both directions. The other option is
to sample a different set of inputs to drop for the from-left-
to-right LSTM and the from-right-to-left LSTM. Preliminary
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Fig. 1: Place of dropout in RNNs with respect to the LSTM layer.

experiments showed that empirical results are roughly the
same, and we present results with the first option.

III. EXPERIMENTAL SETUP

A. Databases

TABLE I: Number of pages, lines, words and characters in
each dataset

[ Database [ Set [ #Pages | #Lines | #Words [ #Characters

Rimes Train 1,391 10,203 73,822 460,201
(French) Dev. 149 1,130 8,380 51,924
Eval. 100 778 5,639 35,286
IAM Train 747 6,482 55,081 287,727
(English) Dev. 116 976 8,895 43,050
Eval. 336 2915 25,920 128,531
Bentham Train 350 9,198 76,707 419,764
(English) Dev. 50 1,415 11,580 64,070
Eval. 50 860 7,868 40,231

We performed the experiments on three public databases,
presented on Table I. The Rimes database [11] consists of
images of handwritten letters from simulated French mail.
We followed the setup of the ICDAR 2011 competition. The
available data are a training set of 1,500 paragraphs, manually
extracted from the images, and an evaluation set of 100 para-
graphs. We held out the last 149 paragraphs (approximately
10%) of the training set as a validation set, and trained the
systems on the remaining 1,391 paragraphs.

The IAM database [12] consists of images of handwritten
pages. They correspond to English texts extracted from the
LOB corpus, copied by different writers. The database is split
into 747 images for training, 116 for validation, and 336 for
evaluation.

The last database contains images of personal notes of
the British philosopher Jeremy Bentham, written by himself
and his staff in English, around the 18th and 19th centuries.
The data were prepared by the University College, London,
during the tranScriptorium project'. We followed the setup of
the HTRtS competition [13]. The training set consists of 350
pages. The validation set comprises 50 images, and the test set
33 pages.

Uhttp://transcriptorium.eu/

All images have an original resolution of 300 DPI, and the
average character width, measured from the line images and
transcripts, are 38, 39 and 33px for Rimes, IAM and Bentham
databases, respectively.

B. Preprocessing

The systems are trained from the annotated text lines. The
lines are deslanted using the approach described in [14]. The
contrast is enhanced by mapping the 5% darkest pixels to black
and 70% lightest ones to white with a linear interpolation in
between. Twenty white pixels are added on left and right to
account for empty context. All line images were normalized in
height to 72px, by rescaling each of the ascenders, descenders
and core baseline zones to 24px.

C. Feature Extraction

We used two kinds of features separately: handcrafted
features, and raw pixel intensities. In both cases, a sliding
window is scanned through the pre-processed image of each
line to extract fixed-size vectors of features.

The handcrafted features are geometrical and statistical fea-
tures presented in [15]: pixel densities, foreground/background
transitions, position of the center of gravity, counts of pixel
configurations, plus their derivatives. All these features are
extracted with a sliding window of width 3px and shift 3px,
resulting in 56-dimensional feature vectors.

The “pixel” features are extracted with a sliding window
of width 45px (Rimes and IAM) or 57px (Bentham) and shift
3px, and are then rescaled to 20x32px (25x30px for Bentham).
The pixel values are normalized to have zero mean and unit
variance on the training dataset. A padding of the image was
performed before the extraction of pixel values so as to have
the same number of vectors for pixel and handcrafted features.

D. Recurrent Neural Networks

For the two types of input features (handcrafted and
pixels), we trained Bidirectional LSTM-RNNs. The network
architectures considered in this paper alternate LSTM layers
with recurrent connections in the two directions [8] (from-left-
to-right and from-right-to-left), and feedforward tanh layers.
The number of neurons in the hidden layers is 200 units in



the 3 LSTM layers in each direction and in the 2 hidden feed-
forward layers. The RNN has one output for each character,
plus one non-character output, as defined in [16].

We trained the RNN with the Connectionist Temporal
Classification (CTC) objective [16], using Stochastic Gradient
Descent and a learning rate of 0.001, to minimize the sequence
Negative Log-Likelihood (NLL). After each epoch the NLL
loss function is computed on the validation data. The training
procedure stops if this cost did not decrease for 20 epochs,
and the model producing the lowest validation NLL is kept.

E. Decoding with a Language Model

The decoding is performed at line level with the Kaldi
toolkit [17]. It is based on a beam search in a weighted Finite-
State Transducer comprising the HMM, lexicon and LM, as
described in [18]. It is a hybrid setup, where the optical score is
given by the NN posteriors p(s|z), divided by the scaled state
priors p(s)*, where k is a tunable parameter (0.5 produced
the best results on the validation sets). The RNNs predict
characters, so we built single-state character HMMs with a
self-loop and uniform transition probabilities.

For Rimes, we built a 4-gram language model with mod-
ified Kneser-Ney discounting from the training annotations.
The vocabulary is made of 5k words. The language model
has a perplexity of 18 and out-of-vocabulary (OOV) rate of
2.9% on the validation set (18 and 2.6% on the evaluation
set). For IAM, we used a 3-gram language model limited to
the 50k most frequent words, trained on the LOB, Brown and
Wellington corpora. The passages of the LOB corpus appearing
in the validation and evaluation sets were removed prior to
LM training. The resulting model has a perplexity of 298 and
OOV rate of 4.3% on the validation set (329 and 3.7% on
the evaluation set). For Bentham, we built a 4-gram language
model trained on the annotations of the training set, with a
special treatment of hyphenation, as described in [19]. The
vocabulary includes 7k words plus their possible hyphenations.
The OOV rate on the validation set is 5.5% and the perplexity
is 98.

IV. EXPERIMENTAL RESULTS

A. Dropout at Different Positions in standalone RNNs without
Lexical Constraints

In these experiments, we study the effect of dropout at
different relative positions with respect to the recurrences, in
different layers in isolation. We compare the effect of the
position of dropout with respect to the LSTM layer (before,
inside or after, see Figure 1), and of the layers in which it is
applied (none, the first one, the second one, the third one, or
all the layers).

The experiments were carried out on Rimes, IAM and
Bentham. The Character Error Rate obtained using the RNN
without Language Modeling (RNN-CER%) are reported in
Table II. Bold numbers are the best results for dropout at
a single position in a single layer, in all layers, and at all
positions in a single layer. The few configurations for which
the error rate did not decrease, or increased, are signaled in
italics.

TABLE II: Effect of dropout at different positions (RNN-

CER%).
Layers with Place of dropout w.r.t LSTM
L dropout JL before | inside | after | everywhere J

Rimes none 8.2
(Features) Ist 6.8 6.7 8.2 6.7
2nd 6.6 7.3 72 6.8
3rd 7.4 8.6 8.0 8.8
all (1+2+3) 5.0 5.4 6.8 7.1

none 9.7
(Pixels) 1st 71 7.6 8.1 7.2
2nd 7.5 9.6 9.0 8.8
3rd 8.0 9.2 7.8 9.1
all (1+2+3) 5.8 6.0 6.5 8.0

IAM none 10.4
(Features) 1st 9.1 8.5 9.8 8.8
2nd 8.9 9.1 8.6 8.7
3rd 9.1 10.2 9.5 10.4
all (1+2+3) 7.9 7.0 9.0 9.4

none 132
(Pixels) 1st 10.0 9.1 114 10.1
2nd 10.1 11.1 10.6 10.8
3rd 10.9 12.3 11.1 12.6
all (1+2+43) 8.6 8.4 10.1 114

Bentham none 11.0
(Features) Ist 8.5 9.9 12.3 8.8
2nd 9.8 9.9 10.4 10.0
3rd 10.5 11.2 10.7 12.3
all (1+2+3) 7.4 8.1 10.0 8.5

none 14.0
(Pixels) 1st 10.4 9.9 13.4 9.7
2nd 11.0 13.6 12.2 13.0
3rd 12.0 15.1 12.7 14.4
all (1+2+3) 8.0 9.4 10.8 12.3

Besides the fact that dropout almost always helps, we can
draw several conclusions. When dropout is only applied at
one position:

e it is generally better in lower layers of the RNNs,
rather than in the top LSTMs, except when it is after
the LSTM.

e it is almost always better before the LSTM layer than
inside or after it, and better after than inside, except
for the bottom layer.

When it is applied in all layers (bottom, middle and top):

e among all relative positions to the LSTM, when
dropout is applied to every LSTM, placing it after
was the worst choice in all six configurations

e Dbefore LSTMs seems to be the best choice for Rimes
and Bentham, and inside LSTMs is better for IAM.

Moreover, adding dropout before, inside and after the LSTM
at the same time is not as good as choosing the right position.

On Figure 2, we display the weights of the connections
between the inputs and the first LSTM layer, including the
gates, without and with dropout at different positions, on
Rimes database, with pixel inputs. The recurrent connections
are not shown. We notice that the filters are generally sharper
with dropout, as if this regularization technique improved
the selectivity of the cells, making them more focused on
elementary features. This is especially visible for the weights
of the gates. Note that the block artefacts that appear in the
filters of the RNN without dropout is certainly caused by
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Fig. 2: Visualization of the weights of the connections between the pixel inputs and the first LSTM, with different dropout
strategies, for RNNs trained on pixel frames of Rimes database. The first line of each configuration corresponds to the weights
of the cell input in LSTMs, and the bottom three lines are the corresponding weights of the input, forget, and output gate.

our three-zone height normalization. Some units seem to have
specialized in the detection of the presence or absence of
black pixels anywhere in the core region, which is generally
sufficient to detect whitespace, for example, ignoring the
possible descenders of the line above, or ascenders of the line
below.

The values of neighboring pixels are highly correlated. If
the model can always access one pixel, it might be sufficient
to infer the values of neighboring ones, and the weights will
be used to model more complicated correlations. However,
with dropout on the inputs, the local correlations are less
visible. With half the pixels missing, the model cannot rely
one regularities in the input signal, and should model them to
make the most of each pixel.

B. Dropout in RNNs with a Language Model

On Table III, we report the results of different dropout
strategies in the complete systems including the language
models. Dropout is applied in every LSTM layer, at the
different positions relative to it. The baselines are RNNs

Therefore, applying dropout after the LSTM in the top
layer(s) might be beneficial for the beam search in the decoding
with complete systems (cf. Sect. III-E). Indeed, dropout after
the last LSTMs forces the classification to rely on more units.
Conversely, a given LSTM unit will contribute to the prediction
of more labels. Thus, the classification will be more robust,
because it relies on more evidence, and might keep competing
character hypotheses in a closer range, leaving more room
for error correction in the beam search. Moreover, the weight
halving at decoding time stabilizes the response of the network
to small changes to the LSTM outputs. On the other hand,
dropout on the inputs of the LSTM layer prevents it to rely on
their correlations, as explained in the previous section.

TABLE 1V: Effect of dropout at different combinations of
places in complete Recognition Systems (RNN+LM). CERs
inside parentheses correspond to Character Error Rates of the
RNN alone.

Place of ‘ Handcrafted Features

‘ Pixels

. - dropout WER | CER (RNN) WER | CER (RNN)
without dropout, and with dropout after LSTM, as proposed Rimes afer all 1| 128 36 68 33 3165
by [4]. before all || 13.1 3.7 (5.0) 13.8 40 (5.8)

bef. 1/ aft. 2-3 || 12.8 3669 35 40 (63
bef. 1-2/aft. 3 || 127 3.6 (5.6) 13.7 42 (6.0)
TABLE III: Effect of dropout at different places in complete — before’“"‘:ter at j|_127 37 54 127 39 53)

e - TAM after all || 11.8 41 (9.0) 132 [ 47 (10.0)
Recognition Systems (RNN+LM). CERs inside parentheses before al || 123 42 (19) 134 45 (8.6)
correspond to Character Error Rates of the RNN alone. bef. 1/aft. 23 || 11.6 70 (832 19 41 3.0)

bef. 12/ aft. 3 || 112 3.8 8.1) 11.8 42 83)
Database Place of ‘ Handcrafted Features ‘ Pixels before+after all 12.2 4.1 (7.8) 11.6 4.1 (7.9)
dropout || WER | CER (RNN) || WER | CER (RNN) Benth. afterall || 173 | 69 (10.0) 01 | 7.7 (10.8)
Rimes no dropout 12.9 3.7 8.2) 15.5 4.8 (9.7) before all 16.6 6.2 (74) 17.8 6.9 (8.0)
after || 12.8 3.6 (6.8) 13.3 4.1(65) bef. 1/aft. 23 || 16.1 58 (7.0) 17.6 6.7 (8.4)
inside || 132 38 (5.4 143 46 (6.0) bef. 12/ aft. 3 || 16.0 6.0 (7.4) 18.1 6.7 (8.7)
before || 13.1 3.7 (5.0) 13.8 4.0 (5.8) before+after all || 17.1 63 (1.3) 175 6.7 (1.5)
TAM no dropout |[ 117 40 (10.4) 47 [ 57(132)
after || 11.8 4.1 (9.0) 132 | 4701 . .
heide | 116 39 (7.0) 133 50 (8.4) In Table IV, we report the results when the different choices
before || 12.3 42 (19 124 45 (8.6) of dropout positions (before or after) are combined. More
Benth. no dropout |[" 18.1 7.0 (11.0) 213 1 9.0 (14.0) specifically, we apply dropout before LSTMs in lower layers,
mifit;; i;; 66'98((180'1(;) ;(9)'(1) 78'75((190;3) and after LSTMs in upper layers. We see that for the RNN
before || 16.6 6.2 (7.4) 17.8 6.9 (8.0) alone (inside parentheses), dropout before some LSTMs is

We observe that for Rimes, the best results are achieved
with dropout after LSTMs, despite the superior performance of
dropout before for the RNN alone. For IAM, dropout inside
LSTMs is only slightly better. The main difference between
the RNN alone and the complete system is that the former
only considers the best character hypothesis at each timestep,
whereas the latter potentially considers all predictions in the
search of the best transcription with lexical constraints.

always better than dropout after all LSTMs, but not necessarily
much better than dropout before all LSTMs and none after. On
the other hand, for complete systems, adding dropout after the
top LSTMs nearly always improves the results over dropout
before only, and the best combination of before and after
always outperforms both dropout before all and after all. This
optimal combination seems to be before the first two and after
the last LSTM for features, and before and after all LSTMs
for pixels.



The final results of the complete systems using handcrafted
features on evaluation sets are reported on Tables V (Rimes)
and VI (IAM), with dropout before or after every LSTM, or
with the best combination of both from the results of Table IV.

TABLE V: Final results on Rimes database

[ Inputs Dropout || WER [ CER |

No dropout 12.5 3.7

After LSTM 12.7 3.8

Before LSTM 13.2 3.8
Before 1-2 / After 3 12.3 3.8

Pham et al. [4] 12.3 33
Doetsch et al. [20] 12.9 4.3

Features

TABLE VI: Final results on IAM database. Note that [20],
[21] use an open-vocabulary language model which enables
them to have potentially no out-of-vocabulary words.

[ Inputs Dropout || WER [ CER |

No dropout 15.0 59

After LSTM 14.5 5.7

Before LSTM 14.0 5.3
Before 1-2 / After 3 13.2 5.0

Doetsch et al. [20] 12.2 4.7
Kozielski et al. [21] 13.3 5.1
Pham et al. [4] 13.6 5.1

Features

V. CONCLUSION

In this paper, we have studied the influence of applying
dropout at different positions in BLSTM-RNNs. We have
shown that big differences may be observed from different
relative position to the recurrent connections. Applying it only
after LSTM layers, as suggested in [4], or between every layer,
as suggested in [7], is not always optimal. For the RNN alone,
before recurrent connections seems to be a good choice. Yet
we observed, especially for complete recognition systems, that
applying dropout on the classification features, i.e. after the
last LSTM, is crucial to observe WER improvements, without
much degradation of the performance of the RNN alone. It
seems like dropout is best close to the inputs and outputs of the
network. In future works, we plan to verify these observations
with different RNN architectures, in particular the MDLSTM-
RNNE.
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